Nonresonant and resonant mode-specific intermolecular vibrational energy transfers in electrolyte aqueous solutions.
نویسندگان
چکیده
The donor/acceptor energy mismatch and vibrational coupling strength dependences of interionic vibrational energy transfer kinetics in electrolyte aqueous solutions were investigated with ultrafast multiple-dimensional vibrational spectroscopy. An analytical equation derived from the Fermi's Golden rule that correlates molecular structural parameters and vibrational energy transfer kinetics was found to be able to describe the intermolecular mode specific vibrational energy transfer. Under the assumption of the dipole-dipole approximation, the distance between anions in the aqueous solutions was obtained from the vibrational energy transfer measurements, confirmed with measurements on the corresponding crystalline samples. The result demonstrates that the mode-specific vibrational energy transfer method holds promise as an angstrom molecular ruler.
منابع مشابه
Intermolecular vibrational energy transfers in liquids and solids.
Resonant and nonresonant intermolecular vibrational energy transfers in KSCN/KSC(13)N/KS(13)C(15)N aqueous and DMF solutions and crystals are studied. Both energy-gap and temperature dependent measurements reveal some surprising results, e.g. inverted energy-gap dependent energy transfer rates and opposite temperature dependences of resonant and nonresonant energy transfer rates. Two competing ...
متن کاملNonresonant energy transfers independent on the phonon densities in polyatomic liquids.
Energy-gap-dependent vibrational-energy transfers among the nitrile stretches of KSCN/KS(13)CN/KS(13)C(15)N in D2O, DMF, and formamide liquid solutions at room temperature were measured by the vibrational-energy-exchange method. The energy transfers are slower with a larger energy donor/acceptor gap, independent of the calculated instantaneous normal mode ("phonons" in liquids) densities or the...
متن کاملMolecular distances determined with resonant vibrational energy transfers.
In general, intermolecular distances in condensed phases at the angstrom scale are difficult to measure. We were able to do so by using the vibrational energy transfer method, an ultrafast vibrational analogue of Förster resonance energy transfer. The distances among SCN(-) anions in KSCN crystals and ion clusters of KSCN aqueous solutions were determined with the method. In the crystalline sam...
متن کاملComparison Studies on Sub-Nanometer-Sized Ion Clusters in Aqueous Solutions: Vibrational Energy Transfers, MD Simulations, and Neutron Scattering.
In this work, MD simulations with two different force fields, vibrational energy relaxation and resonant energy transfer experiments, and neutron scattering data are used to investigate ion pairing and clustering in a series of GdmSCN aqueous solutions. The MD simulations reproduce the major features of neutron scattering experimental data very well. Although no information about ion pairing or...
متن کاملIntermolecular vibrational energy exchange directly probed with ultrafast two dimensional infrared spectroscopy.
Ultrafast two dimensional infrared (2D IR) spectroscopy has been applied to probe the intermolecular vibrational energy exchange between two model molecules, benzonitrile and acetonitrile-(d3). The vibrational energy exchange between these two molecules is manifested through the growth of cross peaks in their 2D IR spectra. In experiments, their nitrile groups (CN) are not involved in the energ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 115 42 شماره
صفحات -
تاریخ انتشار 2011